Surname
Other Names

Centre Number

GCSE

WJEC CBAC

4473/01

ADDITIONAL SCIENCE/PHYSICS

PHYSICS 2

FOUNDATION TIER

A.M. THURSDAY, 23 May 2013

1 hour

ADDITIONAL MATERIALS

In addition to this paper you may require a calculator

For Examiner's use only		
Question	Maximum Mark	Mark Awarded
1.	7	
2.	9	
3.	6	
4.	7	
5.	7	
6.	12	
7.	12	
Total	60	

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen. Do not use gel pen or correction fluid.
Write your name, centre number and candidate number in the spaces at the top of this page.
Answer all questions.
Write your answers in the spaces provided in this booklet.
If you run out of space, use the continuation pages at the back of the booklet, taking care to number the question(s) correctly.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question. You are reminded of the necessity for good English and orderly presentation in your answers.
A list of equations is printed on page 2. In calculations you should show all your working.
You are reminded that assessment will take into account the quality of written communication (QWC) used in your answer to question 7(i).

Equations

power $=$ voltage \times current	$P=V I$
current $=\frac{\text { voltage }}{\text { resistance }}$	$I=\frac{V}{R}$
speed $=\frac{\text { distance }}{\text { time }}$	$a=\frac{\Delta v}{t}$
acceleration [or deceleration] $=\frac{\text { change in velocity }}{\text { time }}$	$p=m v$
acceleration $=$ gradient of a velocity-time graph	$F=m a$
momentum $=$ mass \times velocity	$F=\frac{\Delta p}{t}$
resultant force $=$ mass \times acceleration	$W=F d$
force $=\frac{\text { change in momentum }}{\text { time }}$	
work $=$ force \times distance	

SI multipliers

Prefix	Multiplier	
m	10^{-3}	$\frac{1}{1000}$
k	10^{3}	1000
M	10^{6}	1000000

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

Answer all questions.

1. (a) Draw a line from each of the four boxes on the left to a box on the right.

Examiner

Part of nuclear reactor

Its function
Provides atoms for fission to occur

Slow down neutrons

Absorb radiation
(b) A nuclear reaction that takes place in a nuclear reactor is shown below. Use the diagram to help you answer the questions that follow.

(i) Write down the name of this type of reaction. .. $\quad[1]$
(ii) Name one waste product of this reaction.
(c) State two reasons why waste radioactive materials from nuclear reactors need to be stored safely for a long period of time.

1. \qquad
\qquad
2. \qquad
\qquad
3. A student measures the voltage across a resistor and the current through it using the circuit below.

(a) The ammeter in the diagram reads $\mathbf{3 . 0} \mathrm{A}$ and the voltmeter reads 9.0 V .
(i) Write down the size of the current that flows through the lamp.

Current $=$
(ii) Plot these ammeter and voltmeter readings as a point on the grid below.

Examiner
(iii) Draw the graph line for the resistor on the grid opposite.
(i) Use the equation:

$$
\text { resistance }=\frac{\text { voltage }}{\text { current }}
$$

to calculate the resistance of the resistor when the voltage is 9.0 V .

Resistance $=$
 Unit of resistance

(ii) Use an equation from page 2 to calculate the power of the resistor when the voltage is 9.0 V .
Power $=$
Unit of power
3. Radioactive carbon-14 is an isotope of carbon. It is produced high in the atmosphere when a neutron (n) combines with a nitrogen (N) nucleus, releasing a proton (p) in the process.

Carbon-14 written in the form ${ }_{Z}^{A} \mathrm{X}$ is ${ }_{6}^{14} \mathrm{C}$.
(a) Write down carbon-12 in the form ${ }_{Z}^{A} \mathrm{X}$.
(b) The nuclear reaction that produces carbon-14 is written below.

$$
{ }_{0}^{1} \mathrm{n}+\cdots{ }_{7} \mathrm{~N} \longrightarrow{ }_{6}^{14} \mathrm{C}+{ }_{\ldots \ldots \ldots}^{1} \mathrm{p}
$$

Fill in the missing numbers in the equation above.
(c) Complete the following sentences with the number of particles, if any, in a ${ }_{6}^{14} \mathrm{C}$ nucleus.

A ${ }_{6}^{14} \mathrm{C}$ nucleus contains \qquad protons.

A ${ }_{6}^{14} \mathrm{C}$ nucleus contains \qquad neutrons.
A ${ }_{6}^{14} \mathrm{C}$ nucleus contains \qquad electrons.

BLANK PAGE

PLEASE DO NOT WRITE ON THIS PAGE

4. The graph below shows how the braking distance for a car and the driver's thinking distance change with the speed of the car.

(a) A car driver travelling along a road sees a child step on to the road ahead. The driver's thinking distance is 9 m .
(i) Use the graph to write down the speed of the car.

$$
\begin{aligned}
& \text { Speed }= \\
& \text { m/s }
\end{aligned}
$$

(ii) Use the graph to write down the distance travelled whilst the car is braking from this speed.
(b) The car travels on at $25 \mathrm{~m} / \mathrm{s}$.
(i) Use the equation:

$$
\text { time }=\frac{\text { distance }}{\text { speed }}
$$

to calculate the thinking time for the driver at this speed.

$$
\text { Time }=
$$

\qquad
(ii) Use the graph to find the total stopping distance when the car travels at $25 \mathrm{~m} / \mathrm{s}$.

Total stopping distance $=\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .$. \qquad
(iii) State one factor that would decrease the braking distance at $25 \mathrm{~m} / \mathrm{s}$.
[2]

\qquad
5. A girl catches and stops a ball of mass 0.15 kg which is moving at a speed of $20 \mathrm{~m} / \mathrm{s}$.

(a) (i) Use the equation:

$$
\text { momentum }=\text { mass } \times \text { velocity }
$$

to calculate the change in momentum of the ball.
(ii) Use an equation from page 2 to calculate the force applied by the girl if the ball is stopped in 0.5 seconds.

Force $=$ \qquad
(iii) The girl now doubles the time taken to stop the ball by moving her hands towards her as she catches it. What is the size of the force now?

Force $=$ N
(b) In some situations people have to be stopped suddenly and safely. The force on them is reduced by increasing the stopping time.
(i) Name a situation in which this happens.
(ii) Describe how the stopping time is increased.
\qquad
\qquad
6. All living material takes in carbon-14 (C-14) which is radioactive and decays by beta emission.
(ii) Explain how carbon-14 decays by beta emission. fossils. The age of things that died more than $\mathbf{1 0}$ half-lives in the past cannot be accurately measured as the amount of C -14 present is too small.
(a) (i) State what you understand by the statement "the half-life of carbon-14 is 6000 years".
(10)
\qquad
(b) The activity of an amount of carbon-14 reduces with time in the way shown in the table below. (All values have been adjusted for background radiation.)

Time (years)	0	6000	12000	18000	24000
Activity (c/min)	800	400	200	100	50

(i) Use the information in the table to plot a graph on the grid below.

(ii) Use the graph to give the activity from the carbon at 16000 years.
Activity =
\qquad $\mathrm{c} / \mathrm{min}$
(iii) Calculate the number of years after which carbon dating proves to be impossible.
Number of years =
\qquad
(c) (i) A sample of bone taken from a skeleton at an archaeological site gave a reading of $32 \mathrm{c} / \mathrm{min}$. An identical mass of bone in a living animal gives a reading of $80 \mathrm{c} / \mathrm{min}$. Use the graph to find the age of the skeleton.
years
(ii) State the method you used to arrive at your answer and show it on the graph. [2] [2]
\qquad
\qquad
7. The velocity-time graph for part of a journey of a bus is shown below.

(i) Using data from the graph, describe the motion of the bus during the 70 s shown.
(ii) During the first 10 s , the bus travels 50 m . Use this information to construct a distance-time graph for the first $\mathbf{1 0}$ s only on the grid below.
Distance (m)

(iii) Use the equation:

$$
\text { distance }=\text { speed } \times \text { time }
$$

to calculate the distance travelled by the bus between \mathbf{A} and \mathbf{B} on the graph opposite.
Distance travelled $=$ \qquad

Examiner only

